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Abstract
The magnetization distribution and phase behaviour of large but finite Ising
simple cubic L × L × L lattices in d = 3 dimensions and square L × L lattices
in d = 2 dimensions are studied for the case where four free boundaries are
present, at which surface fields +Hs act on one pair of opposite boundaries
while surface fields −Hs act on the other pair (in d = 3, periodic boundary
conditions are used for the remaining pair). Both the distribution PL (m) of
the global magnetization and also the distribution of the local magnetization
m(x, z) are obtained by Monte Carlo simulations, where x and z denote the
coordinates when the boundaries are oriented along the x-axis and z-axis (in
d = 2); or along the xy-plane and zy-plane (in d = 3, where the periodic
boundary condition applies in the y-direction). Varying the temperature T and
linear dimension L it is found that a single bulk rounded phase transition occurs,
which converges to the bulk transition temperature Tcb as L → ∞, unlike
other geometric arrangements of competing boundary fields, where a second
transition occurs in the bulk due to interface formation or delocalization, related
to wedge or corner filling or wetting transitions, respectively. In the present
geometry, only precursors of wetting layers form on those boundaries where the
field is oppositely oriented to the magnetization in the bulk and the thickness of
these layers is found to scale like L1/2 (in d = 2) or ln L (in d = 3), respectively.
These findings are explained in terms of a phenomenological theory based on
the effective interface Hamiltonian and scaling considerations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years there has been much interest in clarifying wetting behaviour at flat surfaces as
well as of systems exhibiting wedges and corners [1–23] and also the interplay of surface and
interfacial phenomena with bulk phase transitions finds increasing attention [6, 24–37], in part
motivated also by the fact that such phenomena may be relevant for devices of nanoscopic size,
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as proposed for various purposes in nanotechnology. However, here we shall address only a
very simple generic model, from the point of view of statistical thermodynamics, namely the
nearest neighbour ferromagnetic Ising model on square and simple cubic lattices, with four
free surfaces in both cases, at which competing boundary fields act (in the simple cubic case
we apply a periodic boundary condition (p.b.c.) at the remaining two surfaces in the third
direction).

When one applies competing boundary fields at two boundaries only (+Hs on one
boundary, −Hs on the opposite boundary), choosing a p.b.c on the remaining two (d = 2)
or four (d = 3) surfaces, one obtains the well studied case of the interface localization–
delocalization transition [6, 24–30, 36, 37]. As is well known, the temperature at which this
transition occurs tends to the wetting [1–6] transition temperature in the thermodynamic limit.

When one applies competing boundary fields at four boundaries such that two boundaries
adjoining at a corner (d = 2) or a wedge (d = 3) get a field of the same sign, a different
type of interface localization–delocalization transition occurs [31–35], related to the corner
(wedge) filling transitions [7–23] of semi-infinite corners (or wedges, respectively). Note
that in the thermodynamic limit the system undergoes ‘bulk’ transitions (in the sense that the
total magnetization of the system changes, and/or that singularities of the total susceptibility,
specific heat etc occur) at two distinct temperatures (cf figure 1): at the critical temperature Tcb

of the bulk Ising system, susceptibility and specific heat diverge, but the total magnetization
remains zero, since domains of equal size but opposite orientation of the magnetization form.
Only at a second (lower) transition temperature is the interface separating the two domains
localized at one of the competing boundaries (in the interface localization transition related to
the wetting transition, at the temperature Tw) [24–30] or at the corners (or wedges, respectively)
[31–35], in the case of the interface localization transitions related to the filling transition, at
the temperature Tf . We note that it depends on details of the model (such as whether exchange
constants near the boundary are weaker or stronger than in the bulk, etc) whether these interface
localization transitions are first order or (anomalous [31–35]) second order transitions. In the
related case of a thin film with L × L × D geometry and two competing L × L boundaries
one may get sharp second order interface localization transitions in the limits L → ∞ but
D finite also, of course, and these transitions belong to the d = 2 Ising universality class
[6, 29, 30, 36, 37].

However, there exists a further possibility of arrangement of the boundary fields, namely,
one may have the same sign of the field on opposite boundaries, so that the sign alternates
as + − + − when one goes clockwise around the system. To the best of our knowledge, this
possibility of boundary conditions has not yet been considered in the literature, and hence we
fill this gap in the present paper. We show that, unlike the other choices of competing boundary
fields, only a single transition affecting ‘bulk’ properties (bulk magnetization, susceptibility,
etc) can now occur, and this transition takes place at Tcb. At Tw, wetting transitions occur
at these boundaries where the sign of the boundary field is opposite to the sign of the bulk
magnetization, but this transition implies a singularity of the surface free energy of the system
only, and has no effect on any ‘bulk’ properties of the total system. Nevertheless, we are
interested in analyzing the domain pattern that emerges as long as L is still finite (figure 1(c)).

Of course, when one asks for experimental realizations of such systems, anisotropic
magnets with competing surface fields may be difficult to produce in the laboratory. We note,
however, that the Ising magnet may be re-interpreted as a lattice gas (spin up representing
an empty cell and spin down an occupied cell), and the surface fields are related to particle-
wall interactions (which may be repulsive or attractive, depending on the chemical nature of
the wall). Similarly, the Ising magnet can also be mapped onto a lattice model for a binary
(AB) mixture. It is clear that for such applications the condition of precise antisymmetry
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Figure 1. Schematic description of the phase transitions that occur in Ising L×L×L cubes (or L×L
squares, respectively) in the limit L → ∞ for different choices of boundaries on which competing
fields act. In case (a), there are only two free boundaries (shaded); at the remaining boundary
(boundaries) periodic boundary conditions (p.b.c.) are applied, while in cases (b), (c) there are four
free boundaries (shaded), and (in the case of dimensionality d = 3) a p.b.c. is applied in the third
direction (perpendicular to the plane of the sketches). The sign of the competing surface fields ±Hs
is indicated. Note that in cases (a) and (b) a phase transition occurs at the bulk transition temperature
Tcb towards a state with two domains of equal size but opposite orientation of magnetization, so
the total magnetization remains zero for Tw < T < Tcb (case a) or Tf < T < Tcb (case (b)),
respectively, Tw and Tf being the wetting and wedge filling transition temperatures, respectively.
At the latter transition temperatures, the system obtains a spontaneous magnetization since the
interface separating the equally sized domains moves to either the left or right wall (case (a))
or bottom left or top right wedge (corner), respectively (case (b)). In case (c), the transition to
single-domain states already occurs at Tcb. However, for Tw < T < Tcb one still has wetting
layers on those walls whose surface field is oriented oppositely to the magnetization in the bulk,
but the thickness �0 of these wetting layers (though �0 → ∞) is negligible compared to L in the
thermodynamic limit.

of the boundary field is artificial, and one should consider the more general choice where
the alternation of fields reads +Hs, −H ′

s, +Hs, −H ′
s. For simplicity, this complication is

disregarded here and left for future work.
Our model, where along a square (or along a cube) different surface interactions occur, is

an example of controlled nanoscale surface interactions, which have become of great interest
in the context of nanotechnology as a means to influence the phase separation of polymer
mixtures [38], the stability of thin adsorbed films [39] and their wetting behaviour [40]. The
physics of nano-architectured and nano-structured materials in general is a rapidly developing
field [41]. Although a simple Ising model study clearly is only a first step towards the
description of the phase behaviour in such complicated real systems, we emphasize that Ising
model studies of wetting, capillary condensation, interface localization, etc have become very
fruitful to understand related phenomena for polymer mixtures, as exemplified in a recent
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review [6]. We do expect that the interplay of interface free energies/surface excess free
energies/line tensions that is crucial for the understanding of the phenomena in the present
model, as is discussed below, will help to develop the insight with related phenomena for more
complex materials influenced by controlled nanoscale interactions.

The outline of the present paper is as follows. In the next section, we describe a simple
phenomenological theory based on the concept of the effective interface Hamiltonian [1–6]
and on the scaling theory of surface critical phenomena [42–44]. In section 3, we present our
Monte Carlo results for the case d = 3, and in section 4 for the case d = 2. Section 5 gives a
summary and outlook for further work.

2. Phenomenological theory

In this section we consider Ising square (L × L) or simple cubic (L × L × L) lattices with
free boundaries at which pairwise competing fields ±Hs act, as shown in figure 1(c). In the
absence of a bulk field H , no sign of the total magnetization is preferred by the system. We
are interested in how in a finite system the transition takes place from the disordered phase
for T > Tcb over a state with a strongly inhomogeneous distribution of the magnetization
in the critical region (figure 2) to a state where the system basically is in a monodomain
configuration, but ‘decorated’ with precursors of wetting layers at these boundaries where the
sign of the surface field is opposite to the sign of the magnetization, at temperatures well below
Tcb.

In the different regimes of temperature, different theoretical approaches are applied.
While for temperatures in the critical region we rely on phenomenological scaling
descriptions [42, 43], for temperatures well below Tcb (where the correlation length in the bulk
and hence the ‘intrinsic thickness’ of the interface is of the order of the lattice spacing [45–48])
we apply the concept of the effective interface Hamiltonian [1–6]

Heff {�} =
∫

dx

[
σ

2

(
d�

dx

)2

+ Veff(�)

]
, (1)

where σ is the interfacial stiffness, and Veff(�) the effective potential caused by the boundary
field. In the simplest case of short range forces caused by the boundary, as is implied by
boundary fields±Hs acting on the surface plane (or surface row, in the d = 2 case, respectively),
at temperatures T higher than the wetting transition temperatures Tw, one may take [1–6, 29]

Veff = a exp(−κ�), a > 0, (2)

κ−1 being a decay length which is of the order of the correlation length of order parameter
fluctuations in the bulk.

Note that by equations (1) and (2) we have tacitly omitted any contributions due to
the line tension [46, 49–53], i.e. the free energy excess due to the contact line (in d = 3)
where the interface between domains of up spins and down spins meets the edge (figure 2).
This neglect is motivated simply by the lack of knowledge of the line tension for the chosen
geometry. However, assuming that for small contact angles of the interface the line tension
should not depend on the contact angle, the line tension anyway should not affect the analysis
which follows.

We are now interested in deriving the function �(x) that describes the local distance of the
interface from the boundary (figure 2). This function can be found from the consideration that
Heff{�(x)} can be interpreted as a free energy functional that one wishes to minimize, subject
to the boundary conditions

Heff {�(x)} → 0, �(x = ±L/2) = 0. (3)
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Figure 2. Schematic description of the change of state in case (c) of figure 1 for the case where
the linear dimension L is large but finite. Far above Tc (a) the system is basically disordered
everywhere (only on a scale of the correlation length ξb the boundary fields induce a weak local
order close to the respective boundaries (not shown)). Near Tcb, however, when ξb has grown to
a size comparable to L , the order induced by the surface fields has spread out to domains that
range almost towards the center of the system (but the magnetization m(x, y) in these domains is
strongly inhomogeneous and decreases smoothly to zero when the interfacial regions (shaded) are
reached; of course, there are no sharp interfaces, since the interfacial width is of the same order as
ξb, when one is below Tcb). From this state, the system can develop to either the left or the right
domain configuration when the system is cooled further to a temperature far enough below Tcb (but
above the temperature Tw(Hs)) such that ξb � L (case (c)). Then precursors of wetting layers are
separated from the majority domain by a ‘sharp’ interface (i.e., its ‘intrinsic’ thickness is of order
ξb) with average location at �(x).

This leads to the Euler–Lagrange equation

dVeff

d�
= −κa exp(−κ�) = σ

d2�

dx2
. (4)

This nonlinear ordinary differential equation is readily solved, noting the analogy with
classical mechanics: interpreting x as a time variable t , � as a spatial coordinate y, the
equation σ d2 y/dt2 = −κa exp(−κy) is Newton’s law of classical mechanics, which is
readily integrated once using energy conservation: multiplying by ẏ = dy/dt , the resulting
equation is (d/dt)[−a exp(−κy) + σ ẏ/2] = dE/dt = 0. The energy E must be chosen such
that the kinetic energy is zero on the ‘top of the hill’, i.e. for y = �0. So we must choose
E = −a exp(−κy) + σ ẏ2/2 = −a exp(−κ�0). The ‘particle’ starts with maximum velocity
at the point y = 0 and rolls up to the point y = �0, where it slows down to zero velocity.
So the result of this consideration is, translated back to our problem,

(σ/2a)(d�/dx)2 = exp(−κ�) − exp(−κ�0), 0 � � � �0. (5)
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This differential equation can be solved by simple quadrature,

x = ±
√

σ

2a

∫ �0

�

d�′√
exp(−κ�′) − exp(−κ�0)

+ const, (6)

and substituting y = exp(−κ�) we find the solution in terms of an elementary integral
[y0 = exp(−κ�0)]√

2a

σ
κx = ±

∫ y dy ′

y ′√y ′ − y0
+ const = ± 2√

y
arctan

√
y − y0

y0
+ const. (7)

Noting that x = 0 corresponds to � = �0, and arctan 0 = 0, we find that the integration
constant is zero, and hence√

2a

σ
exp(−κ�0)

κx

2
= arctan

√
exp(−κ(� − �0)] − 1, (8)

which is readily inverted as

κ[�(x) − �0] = 2 ln

{
cos

[√
2a

σ
exp

(
−κ�0

2

)
κx

2

]}
. (9)

The condition that �(x = ±L/2) = 0 fixes �0, in terms of the transcendental equation

exp(κ�0) = 1 + tan2

[√
2a

σ
exp

(
−κ�0

2

)
κ L

4

]
. (10)

Since for L → ∞ we also have �0 → ∞ (for T > Tw, as assumed here through our
choice for Veff(�)), the argument of the tan-function must go to π/2 for L → ∞. This yields

�0 = 2

κ
ln

(
κ L

2π

√
2a

σ

)
. (11)

A logarithmic growth of wetting layers in finite systems (but for periodic boundary
conditions, such that �(x) ≡ �̃0 throughout) has already been obtained in early work by
Kroll and Gompper [54].

It is also interesting to generalize this treatment to long range forces at the boundaries,
such as an effective potential decaying as a power law,

Veff(�) = a�−p, � → ∞. (12)

A reasoning analogous to the arguments leading from equations (3) to (5) now yields

σ

2a

(
d�

dx

)2

= �−p − �
−p
0 , a0 � � � �0, (13)

where we have replaced the lower limit zero in equation (5) by the lattice spacing a0 to cut off
the divergence of the potential, equation (12), as � → 0. The result analogous to equation (6)
reads

x = ±
√

σ

2a

∫ �0

�

d�′/
√

�′−p − �
−p
0 . (14)

Since we are not aware of a simple solution of the integral in equation (14) in terms of
elementary functions, we consider various approximations. Near x = ±L/2, where � is close
to its lower limit a0, the term �

−(p+1)

0 is negligible in comparison with �−(p+1) in equation (13).
Hence we obtain, for x > 0

L/2 − x =
√

σ

2a

∫ �

a0

d�′(�′)p/2 =
√

σ

2a

(� − a0)
(p/2+1)

(p/2 + 1)
. (15)
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An analogous solution can easily be written down for x < 0. If one could use equation (15)
even for x = 0, one would conclude

L/2 ≈
√

σ

2a

�
(p/2+1)

0

(p/2 + 1)
, �0 ≈ (2a/σ)1/(p+2)

[
(p + 2)

4
L

]2/(p+2)

. (16)

An approximate solution with the right symmetry properties with respect to the sign of x
then reads, for �(x) � a0,

�(x) =
[

2a

σ

(
p + 2

4

)2
] 1

p+2
{(

L

2
− x

)2/(p+2)

+

(
L

2
+ x

)2/(p+2)

− L2/(p+2)

}/
(2

p
p+2 − 1).

(17)

Equation (17) reduces to equation (16) for x = 0 and satisfies the condition �(x =
±L/2) = 0, although near x = L/2 equation (15) is not strictly satisfied.

Fortunately, (14) can be expressed in terms of elementary functions for some special cases
of physical interest, such as p = 1 and p = 2. In the latter case the solution is particularly
simple, the shape of the interface is an ellipse,

[�(x)]2 =
√

a

2σ
L

(
1 − 4x2

L2

)
, �0 =

( a

2σ

)1/4 √
L, (18)

while for p = 1 we find√
2a

σ
x = −√

�0�(�0 − �) + �
3/2
0

(
arctan

√
�

�0 − �
− π

2

)
, �0 =

(
2a

π2σ

)1/3

L2/3. (19)

From these results one sees that the simple approximation (16) predicts correctly the exponent
of L but overestimates the prefactor.

A particularly interesting case occurs for d = 2 and short range boundary fields: as
emphasized by Fisher [55], the one-dimensional interface can be viewed at low temperatures
as a random walk problem, interpreting x as a time variable, and with probability p � 1 a step
occurs either in the +y-direction or in the −y-direction (and with probability 1−2 p the walker
continues in the x-direction). Due to the condition p � 1, which holds at low temperatures,
no overhangs occur in the interfacial configurations, and then this mapping between Ising
interfaces in two-dimensional ferromagnets and random walks becomes exact. From the
analysis presented by Fisher [55] one can conclude that the effect of statistical fluctuations of
such an interface interacting with a repulsive wall at y = 0 can be described by a mean-field
treatment of the Hamiltonian equation (1) with an effective entropic potential

Veff(�) ≈ 1

2
kBT

d2
0

�2
, � � a0. (20)

From this random walk picture, Fisher also shows that for a bubble of basis length L
(i.e., an interface touches an infinite wall at x = −L/2 and then again at x = L/2, but these
points are not special points of the wall, which continues straight on both to x → −∞ and to
x → +∞ at y = 0), one obtains an elliptical shape, with a small axis of the ellipse scaling as
�0 ∝ √

L . Although this is not precisely our problem—here the points x = ±L/2 are special,
due to the boundaries along the y-direction that join there—it is interesting that for p = 2
(corresponding to equation (20)) the approximate equation (17) is just such an elliptical shape
of the interface as found by Fisher [55].

All the above considerations are applicable only in an intermediate temperature regime, for
temperatures sufficiently far below the bulk critical temperature Tcb (such that the correlation
length ξb is much less than L), but above the wetting transition temperature Tw(Hs). Near Tcb
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a treatment in terms of the capillary wave Hamiltonian considered within mean-field theory is
inappropriate, of course, when �0 is no longer much larger than ξb. In this regime, however,
some conclusions are possible from the general scaling theory of surface critical phenomena
[42–44]. Noting that ξb ∝ |t|−ν where t = 1 − T/Tcb and ν ≈ 0.63 is the correlation length
critical exponent in the Ising universality class [56–58], the singular part of the free energy
can be written in terms of a scaling function f̃±,

fsing(T, H, Hs, L) = |t|2−α f̃±(L|t|ν , H |t|−�, Hs|t|−�1). (21)

Here we have included a bulk magnetic field H , α ≈ 0.110 is the critical exponent of the
bulk specific heat [57, 58], � = β + γ = 1.564 [57, 58] (β, γ being the exponents of the bulk
order parameter and susceptibility, respectively), while �1 ≈ 0.47 ± 0.01 is the new exponent
describing the surface critical behaviour [42–44]. In d = 2 dimensions, however, all these
critical exponents are exactly known [42–44, 56–58], namely α = 0, ν = 1, � = 15/8, and
�1 = 1/2).

Taking derivatives with respect to the bulk field one can also write down analogous relations
for the magnetization m and susceptibility χ ,

m = −
(

∂ fsing

∂ H

)
T,Hs

= |t|βm̃±(L|t|ν, H |t|−�, Hs|t|−�1), (22)

χ = −
(

∂2 fsing

∂ H 2

)
T,Hs

= |t|−γ χ̃±(L|t|ν , H |t|−�, Hs|t|−�1), (23)

where the scaling relation 2 − α = γ + 2β [56] was used, and m̃±, χ̃± are scaling functions
resulting from the derivative of f̃±. It is often convenient to rewrite these scaling functions
in terms of other variables, namely using X ≡ L1/ν t to eliminate all other powers of |t| by
powers of L,

χ = Lγ /ν χ̃(L1/ν t, H L�/ν, HsL�1/ν), (24)

〈m〉 = L−β/νm̃(L1/ν t, H L�/ν, HsL�1/ν). (25)

Equations (24) and (25) are particularly convenient for finite size scaling analysis, since
at fixed L the new scaling functions χ̃ and m̃ are analytic functions of t, H and Hs also at
Tcb. Nevertheless, since the scaling functions still contain three arguments, a complete test of
finite size scaling in terms of all three variables is rather demanding. Thus, we shall focus on
interesting special cases only. For example, choosing t = 0 (i.e., T = Tcb) and H = 0, one
finds that the second moment of the magnetization distribution scales as

〈m2〉L2β/ν = m̃2(0, 0, HsL�1/ν), (26)

so one can check data collapse on a function of a single scaling variable HsL�1/ν then. It is also
interesting to locate in the plane of variables (t, H = 0, H1) the curve where the susceptibility
has its maximum, since the condition dχ/dt = 0 leads to

χ̃ (1)(L1/ν t, O, HsL�1/ν) = 0 (27)

where χ̃ (1) is the derivative of the scaling function of the susceptibility χ ′, with respect to its
first argument X , and χ ′ is defined as

kBTχ ′ = Ld(〈m2〉 − 〈|m|〉2), (28)

d being the dimensionality of the system. Here we recall that finite size scaling implies that
the hyperscaling relation [56] dν = γ + 2β holds, and that in finite systems the susceptibility
χ ′ that converges to the proper result in the limit L → ∞ for H = 0 needs to use the absolute
value 〈|m|〉 rather than 〈m〉 [59] because in the finite systems there is no broken symmetry, and
hence 〈m〉 ≡ 0 for H = 0.
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(a) (b)

(c) (d)

Figure 3. Contour diagram of the magnetization distribution for L = 40, Hs = −2 and four
choices of β = J/kBT , β = 0.208 (a), 0.220 (b), 0.226 (c), and 0.232 (d). The key for the colour
coding is included. All data are based on averages over 2 × 105 Monte Carlo steps (MCSs) per
spin. Note that the coordinates are denoted as X and Y here (rather than x and z) and run from 0
to L .

3. Monte Carlo results: the three-dimensional case

We have carried out Monte Carlo simulations for the simple cubic nearest neighbour Ising
ferromagnet, varying L typically from L = 20 up to 100 (occasionally also smaller values,
such as L = 10, and larger values, such as L = 160, are included) and also varying both the
inverse temperature β = J/kBT and the surface field Hs/J , but choose H = 0 throughout.
We measure here all lengths in units of the lattice spacing, and also choose J ≡ 1. The
standard Metropolis algorithm is used (due to our choice of surface fields the use of cluster
algorithms [60] would offer hardly any advantage [61]).

Figures 3 and 4 show typical results for L = 40 in terms of contour diagrams of the
magnetization. The case of figure 3(a) illustrates the precise structure of the disordered state
(figure 2(a)): there is a nonzero magnetization near all the surfaces, where the boundary fields
act, but this magnetization decays towards zero after a few lattice spacings as one moves towards
the bulk, and in most of the system the magnetization is close to zero. On the other hand, for
cases (b) and (c), we recognize almost triangular-like cross-sections of the regions where the
magnetization is distinctly nonzero, and the corresponding configuration of a St Andrew’s cross
of the interfacial region, where m(x, z) ≈ 0 (figure 2(b)). The lowest temperature (figure 3(d))
exhibits a state where the average magnetization in the system is nonzero, namely negative,
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Figure 4. The same as figure 3, but choosing for β the value at the critical point (βc ≈ 0.2217 [60])
and Hs = 0 (left part) or Hs = −0.3 (right part). Note the different range of the scale of the colour
coding in both figures.
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Figure 5. Contours m(x, z) = 0.5, m(x, z) = and m(x, z) = −5 near the surface at z = 0 for the
case L = 40, β = 0.25, Hs = −2. The contour for m = 0 is compared to a fit to equation (9). Note
that due to statistical fluctuations the isolines are not strictly symmetric around the line x = 20 in
this plot (again 2 × 105 MCSs were used).

unlike the other three contour plots shown, which still exhibit the full symmetry of a system
which has average magnetization 〈m〉 = 0. This is an example of the situation envisaged in
figure 2(d).

The magnitude of the surface field chosen in figure 3 is rather strong. Therefore, we
examine what happens for other choices of the field Hs (figure 4). We see that for Hs = 0.3 the
behaviour is qualitatively still the same for the choice Hs = 2.0 in the critical region. A different
behaviour, however, is expected for very weak fields, because then the magnetization in the
surface layers may still be weakened due to the ‘missing neighbour’-effect of the free surfaces,



Ising systems with pairwise competing surface fields 6793

10 100
L

0

2

4

6

8

10

12

14

16

l 0m
ax

J/kBT = 0.25
l0=–11.12+5.04ln(L)
J/kBT = 0.27
l0=–7.73+2.86ln(L)
J/kBT = 0.29
l0=–2.56+1.88ln(L)

Figure 6. Plot of �0 versus L (note the logarithmic scale of the abscissa) for three inverse
temperatures β = 0.25, 0.27 and 0.29, using Hs = −2 and box linear dimensions ranging from
L = 10 to L = 160. Straight lines show fits to equation (11). Parameters of the fit are quoted in
the figure.

at least for T < Tcb. At T = Tcb and for Hs = 0, the fluctuations of the magnetization
are reduced (this is known [42–44] from the study of critical correlations near surfaces, of
course). In our case this is reflected by the fact that the average magnetization in the bulk,
which is not strictly zero when an average over a finite observation time is taken, because of
the magnetization fluctuations, is still of order 0.01 in the bulk while it is only of order 0.002
in the surface region (figure 4, left part).

Figure 5 presents then a quantitative comparison of the isolines of the magnetization with
the theory of section 2. Of course, the phenomenological interface Hamiltonian, equation (1),
treats the interface as a sharp kink at z = �(x) where the local magnetization m(x, z) exhibits
a jump from −mb to +mb (or vice versa), mb being the bulk magnetization of an infinite
ferromagnet at the same temperature. It is clear from figure 3(d), however, that the transition
from −mb to +mb is rather gradual, and spread out over several lattice spacings,and this fact also
remains true at lower temperature, such as kBT/J = 4 shown in figure 5. In this case mb ≈ 0.75
and ξb is less than two lattice spacings [27]. The distances (in the y-direction) between the
isolines at m = −0.5, 0, +0.5 are somewhat larger than ξb, however. This fact already indicates
some broadening of the interfacial profiles due to additional statistical fluctuations, presumably
capillary waves [45–48]. Similar interfacial broadening through capillary waves has been
found from simulations in other geometries as well [6, 27–36]. In spite of these deviations
from the simple description of the interface as a sharp kink in a potential, treated in a mean-field
approximation, equation (9) yields a fair description of the average interface position, if the
contour m(x, z) = 0 is identified with the contour z = �(x). Of course, systematic deviations
near the corners of the cube, where �(x) → 0, must be expected, and do occur.

Figure 6 then shows a test of equation (11). It is seen that for all three temperatures
the predicted logarithmic variation is compatible with the simulation data in the range from
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Figure 7. Susceptibility χ ′ (a) and specific heat Cv (b) plotted versus inverse temperature, for
Hs = −2 and various values of L , as shown by the key in the figure. The arrow shows the location
of the bulk critical point. The insets show plots of the peak position versus L−1/ν .

L = 20–160. Thus, despite its simplifications, we feel that the simple theory of section 2 does
provide a satisfactory description of the interfacial behaviour of our model.

We now turn to a description of the phase transition of our system with the choice of
boundary condition as sketched in figure 2. Standard indicators of phase transitions in Ising
systems are susceptibility χ ′ and specific heat Cv (figure 7). While the shapes of these peaks
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Figure 8. Plot of the order parameter 〈|m|〉 versus inverse temperature J/kBT , for various values
of L as shown in the key. Inset presents a corresponding finite size scaling representation, plotting
〈|m|〉Lβ/ν versus |t|L1/ν .

look different from those found for systems with periodic boundary conditions, the qualitative
behaviour is similar [59, 60]. In particular, the peak positions are roughly compatible with a
simple linear variation

J/kBTmax − J/kBTcb ∝ L−1/ν . (29)

Although, as pointed out in equation (27), a second scaling variable HsL�1/ν is present,
its effect on the location of the peak position of χ ′ seems to be relatively small.

A more pronounced change of behaviour is detected when we plot the order parameter
〈|m|〉 versus inverse temperature (figure 8): unlike the case of periodic boundary conditions
(p.b.c.s), the curves for 〈|m|〉 versus J/kBT intersect each other when L is varied! For large
J/kBT , 〈|m|〉 converges to mb from below, while in the case of p.b.c.s exactly the opposite
trend is observed. Note that for L � 60 in the shown temperature range the depression of 〈|m|〉
due to the boundary effects is rather dramatic. The intersections of the 〈|m|〉 versus J/kBT
curves for the various choices of L do not coincide precisely, and there is also no theoretical
reason why they should; but it is clear that for L → ∞ these intersections must move towards
J/kBTcb, and therefore the crowding of these intersection points for J/kBT slightly exceeding
J/kBTcb is no surprise.

If one performs a finite size scaling analysis of 〈|m|〉 in the usual way [59, 60], plotting
〈|m|〉Lβ/ν versus |t|L1/ν (using the theoretical values of the Ising model exponents and the
known value of J/kBTcb, as quoted above), one obtains a quite good data collapse, as the inset
of figure 8 shows. Thus, despite the fact that the presence of the competing surface fields has
changed the behaviour of 〈|m|〉 dramatically, and the theoretical arguments imply the presence
of another scaling variable (HsL�1/ν of equation (25)), which is not taken into account in
the scaling plot shown in the inset of figure 8, one obtains rather nice scaling behaviour: the
effect of the surface fields is somehow effectively absorbed in a different shape of the scaling
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Figure 9. Plot of 〈m2〉L2β/ν versus HsL�1/ν , choosing J/kBT = J/kBTc = 0.2217 and
20 � L � 60, as indicated in the key. The inset shows the raw data 〈m2〉 versus Hs used for
this scaling plot.

function: this may be due to the fact that for the chosen value of Hs one may replace the last
argument HsL�1/ν in equations (24)–(26) effectively by its asymptotic value infinity.

To test this latter hypothesis, figure 9 analyses the behaviour of 〈m2〉 for T = Tcb as a
function of Hs. One sees that 〈m2〉 first decreases slowly and then reaches a limiting plateau (the
earlier the larger L). The scaling plot 〈m2〉L2β/ν versus HsL�1/ν again reveals reasonable data
collapse; note that there are no adjustable parameters whatsoever. Moreover, for HsL�1/ν � 20
the scaling function is indeed almost horizontal already, indicating that the above hypothesis
that for |Hs| = 2 and L � 30 we may approximate HsL�1/ν ≈ ∞ is valid.

A consequence of the fact that (for H = 0) the moments 〈|m|k〉 scale as

〈|m|k〉 = L−kβ/ν m̃(k)(L1/ν t, HsL�1/ν) (30)

follows for the fourth order cumulant [62] UL = 1 − 〈m4〉/[3〈m2〉2], which at Tcb no longer
is a ‘universal’ invariant (characteristic for a particular universality class, such as that of the
three-dimensional Ising model, and depends on the shape of the system and the boundary
conditions used [62, 63]).

Thus, from equation (30) we readily conclude

UL (t = 0, Hs) = Ũ(HsL�1/ν), L → ∞, |Hs| → 0, (31)

and the limits are taken such that |Hs|L�1/ν remains finite.
The fact that we have identified two classes of universal behaviour, namely either free

surfaces with no surface field (Hs = 0), or free surfaces with nonzero surface field (where the
behaviour is controlled by the limit |H |L�1/ν → ∞ which is reached for large L irrespective
of the precise value of Hs) shows that our choice of |Hs| = 2 in figures 5–8 is by no means too
special. In contrast, this choice is very convenient since already in the range 30 � L � 100 we
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Figure 10. Cumulant UL = 1−〈m4〉/[3〈m2〉2] at Tcb plotted versus Hs for various L , as indicated
in the figure.

then already realize this limit, which for much smaller values of |Hs| would only be reached
for significantly larger systems.

We have attempted to estimate this fourth order cumulant (figure 10) but unfortunately
due to its smallness (it decreases from about Ũ(0) ≈ 0.14 ± 0.02 for Hs = 0, the case of free
boundary conditions without surface fields [62], to a value Ũ(∞) ≈ 0.08 ± 0.03 for large
values of |Hs|, see figure 10) it is rather difficult to obtain accurate estimates. The scatter
seen in figure 10 indicates that the effort should be increased by about a factor of 100, in
order to obtain a sufficient accuracy to verify the expected scaling behaviour. Since in view
of figure 9, which verifies the scaling already for the second moment, there is no reason to
doubt equation (31), we have not attempted to undergo such a huge computing effort, which
needs substantial resources of computer time. In any case, figure 10 illustrates the fact that
UL is very different in the present case from its value taken for periodic boundary conditions
{UL(T = Tcb) ≈ 0.4656}.

4. Monte Carlo results: the two-dimensional case

The two-dimensional geometry has the merit that one can easily visualize the microstates of the
system in terms of ‘snapshot pictures’ representing the spin configuration. Figure 11 presents
two examples. One can see that at the temperatures shown the interface is a very contorted
object, showing many overhangs particularly when T → Tcb, and also large bubbles of the
‘wrong’ phase occur in the bulk. Obviously, for the temperatures shown one has to be careful
with the predictions of the random walk model of the interface [55], and therefore we have not
attempted to work out its predictions including precise quantitative detail.

Figure 12 considers the validity of equation (17), which for p = 2 can be written as

�(x) = A[(L/2 − x)1/2 + (L/2 + x)1/2] − B, (32)
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Figure 11. Snapshot pictures of the spin configuration of an L × L square lattice at Hs = 2.0 for
T = 0.88 (a) and T = 0.98 (b), measuring temperatures in units of the critical temperature, for
L = 128. Sites i with si = +1 are shown in black, sites with si = −1 in light grey.
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Figure 12. Plot of the average interface position �(x) versus x for the case L = 256 and four
temperatures. The fit of equation (32) is indistinguishable from the actual data on the scale of this
plot. The inset shows a log–log plot of �0 versus t .

where the constants A, B were treated as fit parameters. One finds that equation (32) is an
excellent representation of the data, apart from the immediate vicinity of the corners, where
�(x) → 0 (these deviations cannot be resolved on the scale of the plot in figure 12).

It is also interesting to consider the temperature dependence of 〈�0〉 as Tcb is approached.
The empirical analysis suggests 〈�0〉 ∝ t−0.4 (figure 12).

However, appealing to equation (16), which reduces for p = 2 to

�0 ≈ (2a/σ)1/4 L1/2, (33)

and noting that in the d = 2 Ising model a = 1
2 kBT a2

0 (equation (20)) and σ ∝ t [45–47], we
would predict that for fixed (and large enough) L

�0 ∝ t−1/4, t → 0. (34)

Actually, the log–log plot in figure 12 indicated some curvature, and thus it is possible
that the asymptotic regime, where equation (34) holds, has not yet been reached. It is also
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part). Linear dimensions from L = 16 to L = 256 are included.

possible that our data for �0 very close to Tcb are slightly ‘contaminated’ by finite size effects.
Clearly, more work in the future will be required to resolve this issue.

Figure 13 shows the distribution of �0 (left part) and the variation of 〈�0〉 with L (right
part). It is seen that the behaviour �0 ∝ L1/2 is nicely verified. All data refer to Hs = 2.0.
Also the fact that P(�0) seems to be described by a universal distribution

P(�0) = 1

〈�0〉 P̃(�0/〈�0〉) (35)
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ν = 1).

is interesting and should be further explored. It is remarkable that the width of P(�0) is
comparable to 〈�0〉 itself. This is a typical property of distributions related to random walks,
and hence we expect that equation (35) may be interpreted in terms of the random walk picture
of interfaces in d = 2 Ising models [55].

Finally, we turn to the behaviour of the total magnetization 〈|m|〉 of the Ising square
with these pairwise competing boundary fields, and related properties such as the second
moment 〈m2〉 and the fourth order cumulant UL (figure 14). The picture is similar to the three-
dimensional case: there is a strong depression of 〈|m|〉 for T < Tcb for small L, in comparison
to mb, and magnetization curves for different L intersect at temperatures slightly below Tcb;
the cumulants UL do exhibit a unique intersection point at Tcb, but its value Ũ(∞) ≈ 0.3
differs very strongly from the corresponding value for periodic boundary conditions (which
is U∗ ≈ 0.615) [58–60]. Both 〈|m|〉 and UL show very good data collapse on the finite size
scaling plots. Again the interpretation of these findings is that for Hs = 2 the scaling variable
HsL�1/ν = Hs

√
L can already be replaced by its asymptotic value infinity, and the variation in

the studied range (from Hs

√
L = 8 for L = 16 to Hs

√
L = 32 for L = 256) is not significant.

Again this idea can be verified examining the variation of properties such as 〈m2〉 at Tcb with
Hs (figure 15). One can see clearly that for HsL�1/ν � 20 the asymptotic region, where no
further change of 〈m2〉L2β/ν with HsL�1/ν occurs, has been reached, and that this value is
different from the value occurring for HsL�1/ν � 1. A similar behaviour is also occurring for
〈m4〉, and for the cumulant UL .

We finally turn to the prediction of equation (27) that an effective critical temperature Tc,L

of the finite system, defined e.g. from the temperature when the susceptibility χ ′(T, Hs, L) has
its maximum, should depend on the strength of the surface field, and so for fixed L one finds
a nontrivial curve in the plane of variables (T, Hs) where this maximum occurs. Figure 16
shows three such curves Tc,L(H1) determined in this way. Of course, equation (27) implies that
the corresponding scaled variable |t|L1/ν = |1 − Tc,L(Hs)/Tcb|L1/ν is again a function of the
scaled surface field HsL�1/ν only. The numerical data do confirm this prediction within some
scatter. Again it is evident that for HsL�1/ν � 10 there is little further change. As expected,
the shift of Tc,L for large Hs (that means HsL�1/ν � 10) is much larger than the shift of Tc,L

for small Hs (that means HsL�1/ν � 1), namely approximately four times larger.
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5. Conclusions

In this paper, we have studied nearest neighbour Ising ferromagnets in d = 2 and 3 dimensions,
assuming square and simple cubic lattices with free boundaries, and two pairs of boundaries on
which surface fields of the same strength but opposite sign act (±Hs). Specifically, boundaries
with the same orientation (along the x-axis or xy-plane, for instance) have the same sign of the
surface field (figures 1(c), 2), so that the boundaries with the same sign of the surface field do not
form a wedge (d = 3) or corner (d = 2), as shown in figure 1(b). It is shown that in the present
case well below the bulk critical temperature Tcb (but above the wetting transition temperature
Tw) well defined precursors of wetting layers do occur for large linear dimension L of the
lattice (figures 1(c), 2(c), 3(d)), but unlike other choices for the arrangement of the competing
surface fields (figures 1(a), (b)) no interface localization–delocalization transition distinct from
the phase transition in the bulk occurs in the thermodynamic limit. Thus the transition that
is observed for the present geometry presents nothing new with respect to bulk behaviour,
but the finite size effects are quite different: the system develops near criticality states with
a characteristic nonuniform magnetization distribution (figures 2(b), 3(b), (c), 4, 11, lower
part), before the transition to configurations exhibiting the symmetry breaking (figures 2(c),
3(d), 11, upper part) gradually occurs. This behaviour has the consequence that the effective
transition temperature Tc,L (measured e.g. by the temperature where the susceptibility χ ′ of
the finite system, equation (28), has its peak) is shifted to considerably lower value than
would occur for systems without a boundary field (see e.g. figure 16). One also finds that
the magnetization 〈|m|〉 is distinctly depressed relative to the corresponding bulk value mb

(figures 8, 14), but standard finite size scaling, where 〈|m|〉Lβ/ν is a simple function of t L1/ν

and t = 1 − T/Tcb, still holds if the surface field is sufficiently strong (i.e., HsL�1/ν � 1).
However, the scaling functions of magnetization (figures 8, 14) and other quantities, such
as the fourth order cumulant (figure 14) in this limit clearly differ from their counterparts
when no surface fields occur. We demonstrate that at the critical temperature the scaled
moments of the distribution of the total magnetization in the system (figures 9 and 15) and
the fourth order cumulant (figure 10) do depend on the value of the surface field. Thus,
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even for L → ∞ at T = Tcb the surface field affects the ‘bulk’ behaviour of the system:
of course, this observation is a simple corollary to the fact that a critical system where the
correlation length is infinitely large is sensitive to boundary effects even if the boundaries are
infinitely far away. Finite size scaling functions and related invariants, such as the value of
the fourth order cumulant at Tcb, are not fully ‘universal’ but rather depend on the value of
the scaling variable HsL�1/ν . As a consequence, for L → ∞ the fourth order cumulant for a
system with free boundary conditions and fixed value of Hs converges to two different values,
depending on whether Hs = 0 or Hs = 0 (just as there are two distinct asymptotes in the
plot for the second moment for small and large HsL�1/ν , figure 15). Of course, one should
recall that the finite size scaling functions (and the cumulant) also depend on the shape of
the system (e.g., if we generalize from the L × L and L × L × L geometries to rectangular
L × M or L × L × M shapes, with M = L) [63], but this problem has not been studied
here.

An interesting finding concerns the precursors of the wetting layers formed in the
region where L by far exceeds the correlation length in the bulk. We have found that the
interface separating these wetting layers from the majority domain has a characteristic shape
(figures 5, 12), which can be accounted for (approximately) by a phenomenological theory
based on the effective interface Hamiltonian (section 2). Simple approximate expressions
for this interface contour z = �(x) have been derived for both d = 3 (equation (9)) and
d = 2 (equations (17), (32)) and found to be in fair agreement with observation (figures 5, 12).
The maximum distance �0 of this contour from the corresponding wall scales as �0 ∝ ln L
((d = 3), equation (11)) or �0 ∝ √

L ((d = 2), equations (16), (33)), again corroborated by
the simulation (figures 6, 13). However, still more work is required to study the temperature
dependence of this length �0.

When one asks for real systems for which these findings are relevant, one should recall
that Ising models can be re-interpreted as lattice gas models of fluids (spin down means a
‘cell’ is occupied by a fluid particle, spin up means the ‘cell’ is empty), and thus the present
system could model a cavity (with linear dimensions in the nanometre or micrometre range)
with inequivalent walls, such that one pair of opposing walls is wetted by the liquid, while the
other pair is not. Of course, such a situation in practice will never correspond to the special
case of precise antisymmetry of the surface fields ±Hs, rather we expect a case where one pair
of surfaces has a field Hs and the other pair −H ′

s, with Hs < H ′
s , for instance. The behaviour

studied here is then expected to occur when in addition a bulk field H is present, of the order
of |Hs − H ′

s|/L, that effectively ‘cancels’ the difference between Hs and H ′
s, similar to the

problem of capillary condensation (or evaporation, respectively) in thin films [6, 61]. The two-
phase coexistence, as described in figures 1(c) and 2(c), is then expected to occur no longer
at zero bulk field but at a field H which is a nontrivial function of temperature, the difference
|Hs − H ′

s|, and L. While in our case the states in figure 2(c) possess a special symmetry (they
can be transformed into each other by combining a flip of all spins with a rotation by 90◦), this
symmetry is lost. Of course, for real fluids there are additional complications due to a lack
of symmetry between liquid and gas in the bulk, and due to the fact that the forces exerted
from walls on the particles in a fluid typically are long range [1–5]. Similar complications
occur when the Ising model is re-interpreted as a lattice model of a binary mixture (spin up
represents an A particle, spin down a B particle). The present paper hence can only be a
modest first step towards the understanding of real systems, which hence may exhibit a more
complex behaviour than found here. We nevertheless hope that the present work will stimulate
further interest in this problem and that experimentalists make efforts to test our predictions
in real systems. We also suggest that the d = 2 case could also be theoretically studied with
numerical variants of transfer matrix methods [64].
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